CADS Ite No	Project no		Date	09/10/2019
	Name		Prepared by	
	Item		Checked by	
	Notes		Revision	
	File	Untitled.cads	Page	1 of 5

Punching shear check

In accordance with BS EN 1992-1-1:2004 + A1:2014 + UK NA

Column and slab geometry

Description	Value
Column dimension, a1	300 mm
Column dimension, a ₂	150 mm
Column dimension, a ₃	150 mm
Column dimension, b1	300 mm
Column dimension, b ₂	150 mm
Column dimension, b ₃	150 mm
Column rotation angle, β	30.0 °
Slab corner distance, ex	300 mm
Slab corner distance, e _y	500 mm
Edge 1 angle, α_1	44.0 °
Edge 2 angle, α_2	44.0 °
Slab thickness, h	300 mm
Cover to top bars T1, c	30 mm
Slab effective depth for reinforcement in direction 1, d ₁	260 mm
Slab effective depth for reinforcement in direction 2, d ₂	240 mm
Slab effective depth (average), d	250 mm

Column dimensions

Openings

No	x _o (mm)	y₀ (mm)	h₁ (mm)	h₂ (mm)	α (°)
1	-200	1000	200	150	0.0
2	500	1000	100	100	45.0
3	500	-200	100	300	71.0

Opening conventions

09/10/2019 Project no Date Name Prepared by Item Checked by Notes Revision File Untitled.cads Page 2 of 5

Computer and Design Services Ltd, Arrowsmith Court, 10 Station Approach, Broadstone, Dorset, BH18 8AX, Tel: +44 (0)1202 603031, Email: support@cads.co.uk

Steel: main slab reinforcement

Description	Value	D
Area of main reinforcement T1, As_1	1571 mm²	C
Diameter of bars T1, d_{T1}	20 mm	s
Area of main reinforcement T2, As_2	1571 mm²	P
Diameter of bars T2, d_{T2}	20 mm	D
Longitudinal reinforcement ratio (dir1), ρ _{l1}	0.006	D re
Longitudinal reinforcement ratio (dir2), ρ _{l2}	0.007	E' sł
Longitudinal reinforcement ratio	0.006	Fi
(mean value), ρι		R

Steel: punching shear reinforcement

Description	Value
Characteristic yield strength of shear reinforcement, fywk	500.0 MPa
Partial factor for reinforcement, γ_{s}	1.150
Diameter of shear link, Φ_{link}	10 mm
Design yield strength of shear reinforcement, f _{ywd}	434.783 MPa
Effective design yield strength of shear reinforcement, fywd,eff	312.500 MPa
First radial spacing factor, k_{s0}	0.35
Radial spacing factor, ksr	0.70

Concrete

Description	Value
$\begin{array}{l} Characteristic \ compressive \ cylinder \\ strength \ of \ concrete \ after \ 28 \ days, \\ f_{ck} \end{array}$	30.0 MPa
Partial factor for concrete, γ_{c}	1.500
Coefficient for long term effect, α_{cc}	1.000
Design value of concrete compressive strength, f _{cd}	20.000 MPa

Loading

Description	Value
Design vertical load, V _{Ed}	600.000 kN
Eccentricity factor (user defined), β	1.50

Control perimeter U_0 , at column face

Control perimeter length (reduced by opening dead zones)	U ₀ = 1024 mm
Shear stress at column face perimeter U_0 [BS EN 6.4.5(3)]	$v_{Ed,U0} = \frac{\beta \cdot V_{Ed} \cdot 10^3}{U_0 \cdot d} = \frac{1.50 \cdot 600.000 \cdot 10^3}{1024 \cdot 250} = 3.515 \text{ MPa}$
Stress reduction factor [BS EN 6.2.2(6)]	$v = 0.6 \cdot \left(1 - \frac{f_{ck}}{250}\right) = 0.6 \cdot \left(1 - \frac{30.0}{250}\right) = 0.528$
Design value of max punching shear stress resistance for control perimeter [UK NA	$v_{Rd,max}$ = 0.5 · v · f_{cd} = 0.5 · 0.528 · 20.000 = 5.280 MPa

Stress check [BS EN 6.4.3(2)].

<u>v_{Ed,U0}</u> = 0.666 VRd,max

6.4.5(3)]

CADS	Project no		Date	09/10/2019
	Name		Prepared by	
	Item		Checked by	
	Notes		Revision	
	File	Untitled.cads	Page	3 of 5

\checkmark The check has passed.

Control perimeter U_1 , at 2d = 500 mm from column face

Control perimeter length U₁ = 3505 mm (reduced by opening dead zones) $v_{Ed,U1} = \frac{\beta \cdot V_{Ed} \cdot 10^3}{U_1 \cdot d} = \frac{1.50 \cdot 600.000 \cdot 10^3}{3505 \cdot 250} = 1.027 \text{ MPa}$ Shear stress at column face perimeter U₁ [BS EN 6.4.3(1)] $C_{Rd,c} = \frac{0.18}{\gamma_c} = \frac{0.18}{1.500} = 0.120$ Coefficient [BS EN 6.4.4(1)] $k = \min\left(1 + \sqrt{\frac{200}{d}}, 2\right) = \min\left(1 + \sqrt{\frac{200}{250}}, 2\right) = 1.894$ Coefficient [BS EN 6.4.4(1)] $v_{min} = 0.035 \cdot \sqrt{k^3} \cdot \sqrt{f_{ck}} = 0.035 \cdot \sqrt{1.894^3} \cdot \sqrt{30.0} = 0.500 \text{ MPa}$ Minimum concrete shear stress resistance [BS EN 6.2.2(1)] Design value of the punching $v_{Rd,c} = max \left(C_{Rd,c} \cdot k \cdot (100 \cdot \rho_{I} \cdot f_{ck})^{\frac{1}{3}}, v_{min} \right)$ shear resistance without punching shear reinforcement $= \max\left(0.120 \cdot 1.894 \cdot (100 \cdot 0.006 \cdot 30.0)^{\frac{1}{3}}, 0.500\right) = 0.605 \text{ MPa}$ [BS EN 6.4.4(1)]

Stress check at perimeter U_1 [UK NA 6.4.5(3)].

 $\frac{v_{Ed,U1}}{2 \cdot v_{Rd,c}} = 0.849$

 \checkmark The check has passed.

Punching shear reinforcement requirement check [BS EN 6.4.3(2)].

 $\frac{V_{Ed,U1}}{V_{Rd,c}} = 1.697$

i Punching shear reinforcement is required

Effective design yield strength of shear reinforcement [BS EN $f_{ywd,eff} = min(250 + 0.25 \cdot d, f_{ywd}) = min(250 + 0.25 \cdot 250,434.783) = 312.500 MPa$

6.4.5(1)] Reinforcement required for

perimeter U_1 [BS EN 6.4.5(1)]

$$A_{swU1,Req} = \frac{(V_{Ed,U1} - 0.75 \cdot V_{Rd,c}) \cdot U_1 \cdot k_{sr} \cdot d}{1.5 \cdot f_{ywd,eff}}$$
$$= \frac{(1.027 - 0.75 \cdot 0.605) \cdot 3505 \cdot 0.70 \cdot 250}{1.5 \cdot 312.500} = 750 \text{ mm}^2$$

Notes:

1. For provided reinforcement see results diagram, and reinforcement perimeter tables.

2. Calculations assume that the shear stud heads provide sufficient anchorage to develop the yield strength of the studs with ductile failure mode.

3. For columns situated closer than d from a slab edge or corner, special edge reinforcement should be provided in accordance with EC2 cl 9.3.1.4.

CADS	Project no		Date	09/10/2019
	Name		Prepared by	
	ltem		Checked by	
	Notes		Revision	
	File	Untitled.cads	Page	4 of 5

Control perimeter U_{outer}, at 1207 mm from column face

 $\frac{V_{Ed,Uouter}}{V_{Rd,c}} = 1.000$

Punching shear reinforcement diagram

Notes:

1. Where rail studs are located close to opening/slab edges such rails to be adjusted manually to provide adequate cover to studs.

2. The outermost shear reinforcement perimeter should be positioned at least 832 mm from the nearest column face (based on the code distance kd = 375 mm, measured from the perimeter U_{outer}).

Summary results

Check	Value	Limit	Utilisation	Result
Stress check at perimeter ${\rm U}_{\rm 0}$	3.515 MPa	5.280 MPa	0.666	√ Pass
Stress check at perimeter U_1	1.027 MPa	1.210 MPa	0.849	√ Pass

CADS	Project no		Date	09/10/2019
	Name		Prepared by	
	ltem		Checked by	
	Notes		Revision	
	File	Untitled.cads	Page	5 of 5

Reinforcement perimeters

No	Column offset (mm)	U _{reduced} (mm)	As _{Req,U1} (mm²)	As _{Prov} (mm²)	Spacing s _t limit (mm)	Max s _t (mm)	As _{stud,min} (mm²)	As _{stud,Prov} (mm²)	Number of studs
1	88	2080	750	1021	375	198	20	79	13
2	262	2684	750	1100	375	335	34	79	14
3	438	3289	750	1335	375	369	38	79	17
4	612	3894	750	1335	500	455	47	79	17
5	788	4499	750	1571	500	472	48	79	20
6	963	5103	750	1571	500	494	51	79	20

Notes:

1. $As_{Req,U1}$ (mm²) is the total area of punching shear reinforcement required for the control perimeter U₁.

2. Maxst (mm) is the maximum spacing of punching shear reinforcement provided measured along the length of the relevant perimeter.

3. As_{stud,min} (mm²) is the minimum area per stud or link as required by BS EN 1992-1-1 clause 9.4.3(2) eqn 9.11.

4. Maxst has been used in eqn 9.11 as spacing st, when calculating Asstud, min.

Punching shear rails schedule

Number of studs per rail	Quantity of rails		
6	13		
5	1		
4	3		
2	3		